Introductory Chemistry formula sheet

Density: D =
$$\frac{g}{ml} = \frac{mass(g)}{volume(ml)}$$
 Protons + electrons = 0 Protons + neutrons = atomic mass

Atomic mass =
$$\Sigma[fraction isotopes * mass isotopes]$$
 $v = \frac{c}{\lambda}$

1)Aplha (
$$\alpha$$
) radiation: particle = ${}_{2}^{4}He$; Parent Nucleus = Daughter nucleus + α particle

2)Beta (
$$\beta$$
) radiation: β particle = $_{-1}^{0}e$; Parent nucleus = Daughter nucleus + β particle

3)Gamma (
$$\gamma$$
) radiation: Gamma radiation: particle = ${}^0\gamma$

Kelvin (K) =
$${}^{\circ}$$
C + 273.15 Degree Celcius ${}^{\circ}$ C = $\frac{5}{9}$ [${}^{\circ}$ F - 32] Fahrenheit F = $\frac{9}{5}$ [${}^{\circ}$ C] +32

Acid + Base
$$\rightarrow$$
 salt + water Arrhenius Acid – Substance that produces hydrogen [H †] ion in solution.

Arrhenius Base – Substance that produces hydroxide [OH⁻] ion in solution.

Introductory Chemistry formula sheet

Density: D =
$$\frac{g}{ml} = \frac{mass(g)}{volume(ml)}$$
 Protons + electrons = 0 Protons + neutrons = atomic mass

Atomic mass =
$$\Sigma[fraction isotopes * mass isotopes]$$
 $\nu = \frac{c}{\lambda}$

1)Aplha (
$$\alpha$$
) radiation: particle = ${}_{2}^{4}He$; Parent Nucleus = Daughter nucleus + α particle

2)Beta (
$$\beta$$
) radiation: β particle = $_{-1}^{0}e$; Parent nucleus = Daughter nucleus + β particle

3)Gamma (
$$\gamma$$
) radiation: Gamma radiation: particle = ${}^0_0\gamma$

Kelvin (K) =
$${}^{\circ}$$
C + 273.15 Degree Celcius ${}^{\circ}$ C = $\frac{5}{9}$ [${}^{\circ}$ F - 32] Fahrenheit F = $\frac{9}{5}$ [${}^{\circ}$ C] +32

Acid + Base
$$\rightarrow$$
 salt + water Arrhenius Acid – Substance that produces hydrogen [H †] ion in solution.

Arrhenius Base – Substance that produces hydroxide [OH⁻] ion in solution.

Introductory Chemistry formula sheet

Gases	
$P_1V_1 = P_2V_2$	
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$	
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	

$c = 2.99 * 10^8 \frac{m}{s}$
$1 \ Calorie \ (Cal) = 1000 \ calories \ (cal)$
= 4184 I
,
$1 \text{ kilowatt} - \text{hour} (kWh) = 3.6 * 10^6 \text{ J}$
, ,
1 atm = 760 mmHg = 760 torr

Oxidation is defined as:	Reduction is defined as:
-Gain of Oxygen	-loss of Oxygen
-loss of Hydrogen	-gain of Hydrogen
-loss of electrons	-gain of electrons

- Element/Compound oxidize is reducing agent
- Element/Compound reduce is oxidizing agent

Introductory Chemistry formula sheet

Gases
$P_1V_1 = P_2V_2$
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

$c = 2.99 * 10^8 \frac{m}{s}$
1 Calorie (Cal) = 1000 calories (cal) = 4184 J
$1 kilowatt - hour (kWh) = 3.6 * 10^6 J$
1 atm = 760 mmHg = 760 torr

Oxidation is defined as:	Reduction is defined as:
-Gain of Oxygen	-loss of Oxygen
-loss of Hydrogen	-gain of Hydrogen
-loss of electrons	-gain of electrons

- Element/Compound oxidize is reducing agent
- Element/Compound reduce is oxidizing agent