Coin and Stamp Problems

Coin and stamp problems involve different types of coins, or stamps with different values. We will use a table with a line for each kind of coin or stamp. Above the table, we will use an equation which shows the following relationship:

(The number)	(The value)	(Total Value of)
of	× of each	= the coins or
 (coins or stamps	coin or stamp	_{(stamps})

EXAMPLE: A box contains \$1.30 in dimes and nickels. How many dimes and how many nickels are there if there are 20 coins altogether?

The first step is to set up the table.

	number	×	value	= total value
dimes				
nickels				

total

Determine how the numbers of each kind of coin are related. **REMEMBER** that you can have only one variable.

Do we know the number of dimes? No. Do we know the number of nickels? No. What <u>do</u> we know about the number of coins? We know they <u>total</u> 20 coins.

We will let x = the number of dimes.

We will let 20 - x = the number of nickels.

		number ×	value	= total value
	dimes	x	10	10 <i>x</i>
	nickels	20 <i>- x</i>	5	5(20 - x)
	total	20		130

NOTE that the value of each type of coin is in cents. Our equation will be:

(The total value) (The total value) ||(of dimes ||) + ||(of nickels ||) = Total Value

(See last column of the table to find expressions for the total value of each kind of coin.)

As we represented the value of each coin in cents we will have to change \$1.30 to 130 cents. You must be consistent with this! Now there are no decimals.

10x + 5(20 - x) 130 =

NOW SOLVE:

 $10x+5(20-x) \ 130=$ $10x+100 \ 5-=x \ 130$ $5x+100 \ 130=5x+100 \ 100$ $130 \ 100-=-$ 5x=30 $5x \ 30$ -- $55 \ x=6$ The number of dimes = 6 The number of nickels = 20 - 6 = 14

- CHECK: 6(10) = 60 cents $14(5) = \underline{70} \text{ cents} + 130$ cents
- **EXAMPLE:** A collection of stamps has some 5¢ stamps, some 8¢ stamps and 25¢ stamps. The number of 5¢ stamps is three times the number of 25¢ stamps. The number of 8¢ is five more than the number of 25¢ stamps. If the value of all the stamps is \$3.76 how many of each kind are there?

Let us first determine how the numbers of each type of stamp are related. We can only use one variable.

Number of $5\phi = 3$ times the number of 25ϕ Number of $8\phi = 5$ more than the number of 25ϕ Number of $25\phi = ?$

NOTE that the number of 5ϕ stamps and the number of 8ϕ stamps are described <u>using</u> the number of 25ϕ stamps.

Let the number of 25ϕ stamps = x then the number of 5ϕ stamps = 3x and the number of 8ϕ stamps = x + 5

	number ×	value	= total value
5¢ stamps	3 <i>x</i>	5	5(3 <i>x</i>)
8¢ stamps	<i>x</i> + 5	8	8(x+5)
25¢ stamps	x	25	25 <i>x</i>
total			376

The value of **<u>all</u>** the stamps = 3.76 which is 376ϕ

Our equation will be:

5(3) 8(x + x + 5) 25 + x = 376

Don't forget to change \$3.76 to 376 cents.

NOW SOLVE:

There are 7 of the 25ϕ stamps. There are 3(7) or 21 of the 5ϕ stamps There are 7 + 5 or 12 of the 8ϕ stamps